

RUFLEX®

Torque limiter

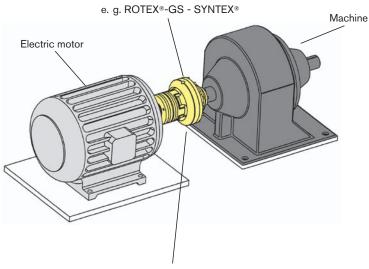
SYNTEX®

Backlash-free Overload System

KTR-SI

Safety system

Table of contents



RUFLEX®	
Torque limiter	239
Overload protection for direct and indirect drives	241
Types and applications	242
Information for selection torque limiters	244
Assembly and operation	245
Standard RUFLEX®	247
RUFLEX® with sprocket	248
RUFLEX® max.	249
RUFLEX® with torsionally flexible ROTEX®	250
RUFLEX® with torsionally rigid BoWex®	251
, ,	
SYNTEX®	
Backlash-free Overload System	
A good idea - The punched disk spring	252
Operating principle	253
SYNTEX® standard flange coupling	254
Standard SYNTEX® with integrated sprocket	255
Standard SYNTEX® with belt drive	256
SYNTEX® with shaft coupling ROTEX® GS	257
Assembly / Limit switch / Proximity initiator	258
Cost-optimised version	259
KTR-SI	
Safety system	0.04
We provide safety	260
Variable applications by modular system	261
Idle rotation coupling (load-separating)	262
Type FT, KT and LT	263
With torsionally flexible ROTEX®	264
KTR-SI Compact Backlash-free, torsionally stiff safety clutch	
Type FT, FT-4.5	266
Type FT with ROTEX® GS	267
With a torsionally stiff TOOLFLEX® S-KN	268

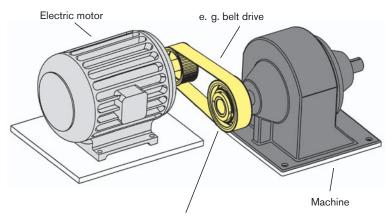
Overload protection for direct and indirect drives

Direct drives

Torque limiter as shaft-to-shaft connection, for example:

- ball spindles
- axle drives
- between motor and gearbox

RUFLEX® - Torque limiter with ROTEX®


SYNTEX® - Safety coupling with ROTEX® GS

KTR-SI - Safety coupling with ROTEX®

Indirect drives

Shaft-to-flange connection, for example:

- sprockets
- belt drives
- crank gears

RUFLEX® - Torque limiter with sprocket

SYNTEX® - Safety coupling with sprocket

KTR-SI - Safety coupling with mounting flange

Types and applications

Type

Characteristics

Applications

- Torque limiter with high capacity due to high-quality materials
- Overload protection up to 6800 Nm
- High capacity of wear for a long service life
- Surfaces zinc-coated and passivated
- See page 247

- Conveyors
- Packaging machines
- Textile machines
- Gear motors

RUFLEX® standard

RUFLEX® with sprocket

- Torque limiter with sprocket
- Design ready for assembly
- Customer's torque is set
- Available from stock with standard sprockets
- Other sprockets available according to customer's requests
- See page 248

- Conveyors
- Automatisation systems
- Actuators

RUFLEX® max.

- Torque limiter in a lengthened design for assemblies with wide driving elements (e.g. double or triple sprockets)
- Detailed adjustment to customer's mounting dimensions possible
- Also available as a sprocket
- See page 249

- Multiple sprocket drives
- Multiple groove V-belt pulleys
- Conveyors
- Packaging machines

RUFLEX® with ROTEX®

- Torque limiter for shaft-to-shaft connection
- Torsionally flexible torque limiter able to compensate for misalignment
- Axial plug-in
- Various elastomers available each adjusted to the application
- See page 250

- Gear motors
- Axle drives
- High-quality pumps
- Printing machines

RUFLEX® with BoWex®

- Torque limiter as a torsionally rigid, doublecardanic shaft-to-shaft connection
- Low-cost shaft-to-shaft connection
- Axial plug-in
- Compensation for high misalignment due to double-cardanic design
- See page 251

- Simple applications
- Low speeds
- High misalignment

Types and applications

Туре

Characteristics

Applications

Safety clutch up to 400 Nm

- Backlash-free, torsionally rigid
- Available as a synchronous or ratchet
- For mounting of customer's components
- See page 254

- Packaging machines
- Machine tools
- X-Y-Z axle drives
- Linear drives

SYNTEX® standard

SYNTEX® with sprocket

- Safety clutch with integrated sprocket
- Customer's torque is set
- Reduction of components and costs
- Standard sprockets available from stock
- Alternatively available with belt pulley instead of sprocket
- See pages 255 and 256

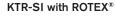
- Conveyors for packaging machines
- Textile machines
- With belt pulley for linear drives

SYNTEX® with ROTEX® GS

- Safety clutch as a shaft-to-shaft connection
- Combination with the backlash-free ROTEX® GS
- Torsionally flexible, able to compensate for misalignment
- Axial plug-in
- Various elastomers available
- See page 257

- Axle drives on machine tools
- Gear motors
- Woodworking machinery
- Linear drives

KTR-SI standard

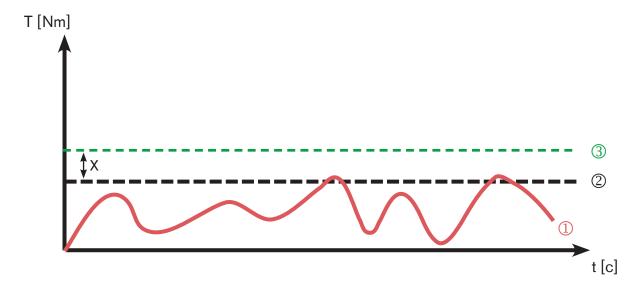

- Safety clutch up to 8200 Nm
- Available as a ratchet, synchronous and failsafe design
- New: Furthermore available as a free switching design (no residual torque)
- See page 262 and 263

- For rugged drives e.g. crushers
- In combination with coupling or belt pulleys, sprockets, etc.

- Safety clutch as a shaft-to-shaft connection
- Torsionally flexible, able to compensate for misalignment
- Axial plug-in
- Various elastomers available
- See page 264

- Axle drives as a shaft-to-shaft connection
- Combinations for motor and gearbox
- Bottle filling machines
- Extruders (as a free switching coupling)

Safety for every application

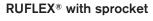


Information for selection torque limiters

- For exact dimensioning torque limiters latest simulation and calculation programmes are available. Therefore let us know many data of your drive. The more precise these data are, the more precise are the results of calculation. Make use of this possibility and discuss with us the application in advance.
- Please notice: High masses at the drive or driven end can mean long slow-down times also in case of torque limiters entered in function. This can cause increased wear at the coupling. Therefore in case of high speeds we recommend to use a free-rotating (load-separating) safety clutch (KTR-SI idle rotation coupling). If required, please contact KTR's engineering department.
- Besides it is important to the failure-free operation to define the engaging torque definitely above the max. operating
 torque of the unit. Therefore we recommend to set the coupling at least 30% above the max. operating torque (also
 refer the diagram below)
- For all torque limiters an electrical disconnection of the drive should be provided. Long slipping or locking times can
 destroy the coupling. We kindly assist you when selecting sensors, end switches or speed controls.

Important factors for the selection of torque limiters:

A smooth operation is only guaranteed if the overload torque set exceeds the maximum operating torque of the machine (see diagram below).


- Torque curve of the machine
- ② Maximum operating torque of the machine
- 3 Torque of the coupling set
- X Safety margin between @ and
 - 3 (should be at least 30% of the maximum operating torque of the machine).

RUFLEX® Torque limiter

Made for Motion

Assembly and operation

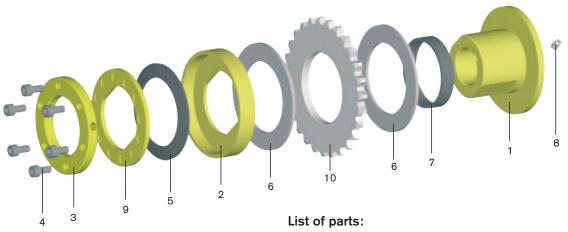
RUFLEX® standard

RUFLEX® with **ROTEX®**

- Overload protection up to 6800 Nm (standard)
- Available with sprocket assembled
- Asbestos-free and rustresistant friction lining for dry running
 - ⟨€x⟩ (ATEX possible on request)
- High wear capacity, long service life
 - High-quality slide bush with dry-film lubricant
 - Torque setting while in place

- Securing of the nut by locking in 12 different positions
 - Easy assembly and torque setting
 - Coupling components from steel, high safety reserves
 - Corrosion protection by zinc-coated and passivated surfaces
 - Rust-resistant and acidproof design on request
 - High capacity due to highquality disk springs and friction linings

The RUFLEX® modular system is able to offer a solution for your drive, too.


The combination with the well-approved KTR couplings and the integration of customer-specific drive elements (e. g. sprockets) provides for an overload protection adapted to every application in an optimum way.

Various layers of disk springs and high-quality friction linings ensure a high capacity even for only a small mounting space.

Assembly and operation

RUFLEX® consists of the following components:

- 1 Hub
- 2 Pressure ring
- 3 Setting nut
- 4 Torque setting screws
- 5 Disk spring
- 6 Friction lining
- 7 Slide bush
- 8 Setscrew
- 9 Locking washer
- 10 Drive component (e.g. sprocket)

Layers of disk springs:

1 TF

- Small specific load on the friction linings
- For small to average torques
- High service life of the friction linings

()

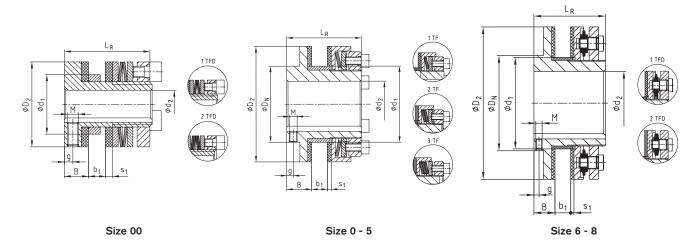
1 TFD

- Small specific load on the friction linings
- Torques as with design 1TF
- Only small decrease of the torque even during a longer period of friction
- Precision torque adjustment due to a double spring excursion

2 TF

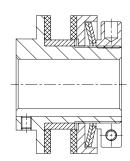
- Average specific load on the friction linings
- Average wear and decrease of torque with longer slipping periods
- Double torque due to double layer of the disk springs

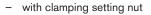
3 TF


- High specific load on the friction linings
- High wear and decrease of torque with longer slipping periods
- Suitable only in special cases for designs with only limited dimensions

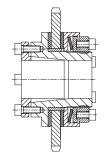
RUFLEX® Torque limiter

Standard RUFLEX®


- Torque limiter for a torque range up to 6800 Nm
- Standard RUFLEX® zinc-coated and passivated
- Torque setting possible while in place
- Asbestos-free and rust-resistant friction linings
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Securing of the setting nut by locking in 12 different positions
- All components are made from high-quality steel



	Technical data															
			Torques [Nm]		Dimension [mm]											
Size	Max. speed				Bo d						Driv compo	ving nent b ₁			Sets	crew
	[rpm]	1TF	2TF	3TF ³⁾	Pilot bore	max.	D ₂	D _N	d ₁ 2)	В	min.	max.	S ₁	L _R	g	М
00	10000	0,5-3	1-5	-	-	10	30	30	21	8,5	2	6	2,5	31	3	M4
0	8500	2-10	4-20	-	-	20 1)	45	45	35	8,5	2	6	2,5	33	3	M4
01	6600	5-35	10-70	-	-	22	58	40	40	16	3	8	3	45	4	M5
1	5600	20-75	40-150	130-200	-	25	68	45	44	17	3	10	3	52	5	M5
2	4300	25-140	50-280	250-400	-	35	88	58	58	19	4	12	3	57	5	M6
3	3300	50-300	100-600	550-800	-	45	115	75	72	21	5	15	4	68	5	M6
4	2700	90-600	180-1200	1100-1600	-	55	140	90	85	23	6	18	4	78	5	M8
5	2200	400-800	800-1600	1400-2100	- 1	65	170	102	98	29	8	20	5	92	8	M8
6	1900	300-1200	600-2400	-	38	80	200	120	116	31	8	23	5	102	8	M8
7	1600	600-2200	1200-4400	-	45	100	240	150	144	33	8	25	5	113	8	M10
8	1300	900-3400	1800-6800	-	58	120	285	180	170	35	8	25	5	115	8	M10


¹⁾ Finish bore larger than Ø 19, keyway to DIN 6885 sheet 3

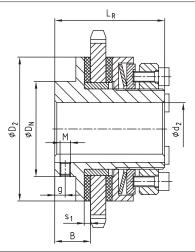
 $^{\scriptscriptstyle (3)}$ To use only for designs with limited dimensions

for radial torque setting

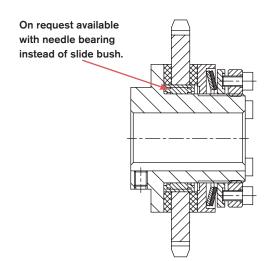
- with taper bush (hub design 4.5)
- frictionally engaged shaft-hub-connection

Oraci ioiiii.	Ord	ler	for	m:
---------------	-----	-----	-----	----

RUFLEX®	1	2TF	10	Ø20
Coupling type	Size	Disk spring layer	Width of driving components	Bore


²⁾ Bore tolerance (drive component): F8 at size 00-4 H8 at size 5-8

RUFLEX® with sprocket



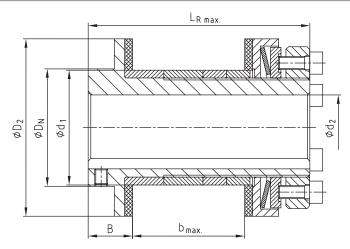
- RUFLEX® torque limiter with sprocket mounted
- Available from stock with standard sprocket (see table below)
- Other sprockets on request
- Complete unit with torque pre-set
- On request also available from stainless material
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

	Technical data													
	Max.		Torques [Nm]			Dimensions [mm]								
Size	speed				Bore o	12						Sets	crew	Standard
	[rpm]	1TF	2TF	3TF 1)	Pilot bore	max.	D ₂	D _N	В	s ₁	L _R	g	М	sprocket
01	6600	5-35	10-70	-	-	22	58	40	16	3	45	4	M5	$^{3}/_{8} \times ^{7}/_{32}, z = 23$
1	5600	20-75	40-150	130-200	-	25	68	45	17	3	52	6	M5	$^{1}/_{2} \times ^{5}/_{16}, z = 22$
2	4300	25-140	50-280	250-400	-	35	88	58	19	3	57	6	M6	$^{1}/_{2} \times ^{5}/_{16}, z = 27$
3	3300	50-300	100-600	550-800	-	45	115	75	21	4	68	6	M6	$^{3}/_{4} \times ^{7}/_{16}, z = 22$

¹⁾ To use only for designs with limited dimensions

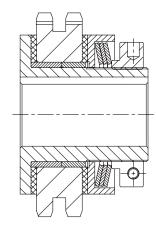
- available with needle bearing
- for high radial load on the sprocket
- for high torques or long slipping periods

Order	form:


RUFLEX®	1	2TF	08 B1, z=24	Ø20	100 Nm
Coupling type	Size	Disk spring layer	Sprocket	Bore	Torque set

RUFLEX® Torque limiter

RUFLEX® max.


- RUFLEX® for assemblies with wide driving components
- E. g. double and triple sprockets
- Detailed adjustment to the customer's dimensions possible
- Also available as a complete unit with sprocket
- Other sizes of RUFLEX® max. on request
- Please mention the width of driving component "b" in your order
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

	Technical data											
	Max.	Torques [Nm] Dimensions [mm]										
Size	speed				Bore	d ₂						
	[rpm]	1TF	2TF	3TF 2)	Pilot bore	max.	D ₂	D _N	В	b _{max.}	d ₁ 1)	L _{R max.}
01	6600	5-35	10-70	-	-	22	58	40	16	33	40	70
1	5600	20-75	40-150	130-200	_	25	68	45	17	43	44	85
2	4300	25-140	50-280	250-400	-	35	88	58	19	54	58	100
3	3300	50-300	100-600	550-800	-	45	115	75	21	62	72	115
4	2700	90-600	180-1200	1100-1600	-	55	140	90	23	91,5	85	154

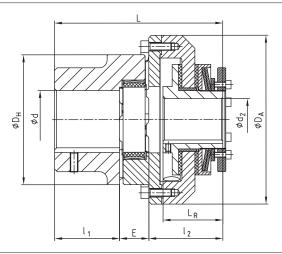
¹⁾ Bore tolerance (drive component): F8

 $^{2)}\,$ To use only for designs with limited dimensions

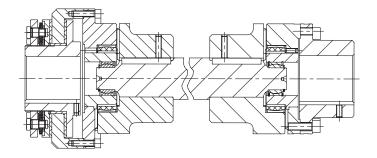
- RUFLEX® max. with sprocket mounted
- available as a complete unit with torque pre-set

\sim	-	0.	fa	rm	
·	ıυ	CI.	10	ш	

RUFLEX® max.	1	2TF	35	Ø20
Coupling type	Size	Disk spring layer	Width of driving components "b"	Bore



RUFLEX® with torsionally flexible ROTEX®

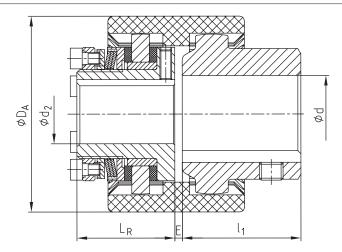

- RUFLEX® with ROTEX® as shaft-to-shaft-connection
- Torsionally flexible safety clutch
- Axial plug-in
- Able to compensate for misalignment
- Various kinds of elastomer hardness available
- Torque can be set while in place
- Easy assembly
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

							Technic	al data								
DUELEV®	RUFLEX® ROTEX®					Dimension [mm]										
RUFLEX® size	size		torques [iviii]			Shore A	Bore	e do	Bore							
		1TF	2TF	3TF ²⁾	T _{KN}	T _{K max.}	Pilot bore	max.	d _{max.}	L	DA	L _R	E	11	l ₂	DH
00	14	0,5-3	1-5	-	12,5	25	-	10	16	59	44	31	13	11	35	30
0	19	2-10	4-20	-	17	34		20 1)	25	78	63	33	16	25	37	40
01	24	5-35	10-70	-	60	120	-	22	35	98	80	45	18	30	50	55
1	28	20-75	40-150	130-200	160	320	-	25	40	113	98	52	20	35	58	65
2	38	25-140	50-280	250-400	325	650	-	35	48	133	120	57	24	45	64	80
3	48	50-300	100-600	550-800	525	1050		45	62	166	162	68	28	56	82	105
4	75	90-600	180-1200	1100-1600	1465	2930	-	55	95	205	185	78	40	85	80	160
5	90	400-800	800-1600	1400-2100	3600	7200		65	110	259	260	92	45	100	114	200
6	100	300-1200	600-2400	-	4950	9900	38	80	115	290	285	102	50	110	130	225
7	110	600-2200	1200-4400	-	6000	12000	45	100	125	317	330	113	55	120	142	255
8	140	900-3400	1800-6800	-	11000	22000	58	120	160	372	410	115	65	155	152	320

¹⁾ Finish bore larger than Ø 19, keyway to DIN 6885 sheet 3

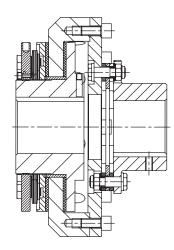
²⁾ To use only for designs with limited dimensions

- RUFLEX® as intermediate shaft coupling
- for large shaft distance dimensions
- available in combination with ROTEX® or RADEX-N® steel laminae couplings


Ord	er	form:	

RUFLEX®	1	2TF	Ø20	ROTEX®	28	98 Sh A	Ø25	100 Nm
Coupling	Size	Disk spring	RUFLEX®	Coupling	Size	Spider	ROTEX®	Torque set
type	Size	layer	bore	type	Size	Spidei	bore	Torque ser

RUFLEX® with torsionally rigid BoWex®



- RUFLEX® with BoWex® as shaft-to-shaft-connection
- Torsionally rigid safety clutch
- Axial plug-in
- Double-cardanic, able to compensate for misalignment
- For simple drives (low speeds, etc.)
- Easy assembly
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

					1	Γechnical	data						
			RUFLEX®		BoV	Vex®				Dimensions			
RUFLEX®	BoWex®		torques [Nm]		torque	es [Nm]				[mm]			
size	size						Bore	e d ₂	Bore				
		1TF	2TF	3TF 2)	T _{KN}	T _{K max.}	Pilot bore	Pilot bore max.		D_A	L_{R}	E	11
00	19	0,5-3	1-5	-	16	32	-	10	19	48	31	2,5	25,0
0	28	2-10	4-20	-	45	90	-	20 1)	28	66	33	2,5	40,0
01	38	5-35	10-70	-	80	160	-	22	38	83	45	1,0	35,5
1	48	20-75	40-150	130-200	140	280	-	25	48	95	52	1,0	45,5
2	65	25-140	50-280	250-400	380	760	-	35	65	132	57	1,0	64,0

 $^{^{\}mbox{\tiny 1)}}$ Finish bores larger than Ø 19 mm, keyway to DIN 6885 sheet 3

- RUFLEX® with torsionally rigid, backlash-free RADEX®-N steel laminae coupling
- suitable for high operating temperatures (up to 280 °C)
- with variable spacers for different shaft distance dimensions

_	_		_		
റ	rda	ar '	f٨	rm	
\sim	·u	, I	··		

RUFLEX®	1	1TF	BoWex [®]	38	Ø20	Ø25	50 Nm
Coupling type	Size	Disk spring layer	Coupling type	Size	RUFLEX® bore	BoWex® bore	Torque set

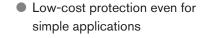
²⁾ To use only for designs with limited dimensions

SYNTEX®

Backlash-free Overload System

A good idea - The punched disk spring

SYNTEX® - Safety clutch with mounting flange

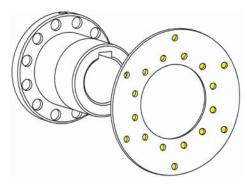

SYNTEX® - Safety clutch with sprocket

SYNTEX® - Safety clutch with ROTEX® GS

- Backlash-free, torsionally stiff overload protection, suitable for reversing drives
- Disconnection of the drive in case of overload
- Reduction of torque peaks
- High repeating accuracy even after a long operation period
- Easy integration of customer components
- Compact design, low mass moment of inertia
 - Variable due to modular system
 - Special disk springs for special applications

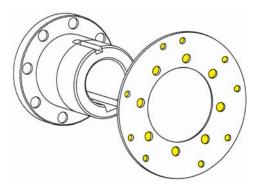
- Easy assembly and torque setting
 - Maintenance-free
 - Insensitive to oil and grease
 - Long service life due to low internal loads
 - Backlash-free shaft-hubconnections
 - Any or synchronous re-engagement
- Automatically operative

SYNTEX® is an overload system with positive operation.


The punched disk spring serves as the component for torque transmission (registered patent).

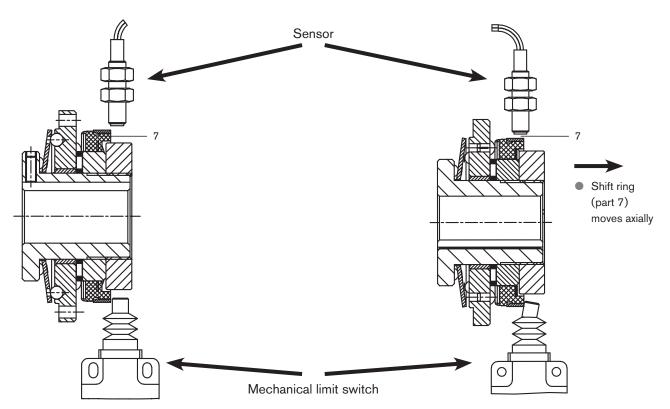
Backlash-free Overload System

Operating principle


Ratchet design DK

If the torque set is exceeded, there is a relative movement between the driving and driven side. The transmittable torque is decreased to a minimum.

The balls leave the indentations of the disk springs. After eliminating the overload, the balls engage automatically with the next following ball indentation of the disk springs.


Synchronous design SK

If the torque set is exceeded, there is a relative movement between the driving and driven side. The transmittable torque is decreased to a minimum.

The balls leave the indentations of the disk springs. After eliminating the overload, the balls re-engage automatically with the disk springs after a rotation of 360°. Driving and driven side are always placed in the same position to each other (other degrees of reengagement, for example 180°, are also possible).

Signal by limit switch or sensor in case of overload

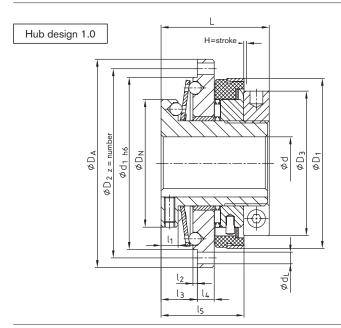
Normal operation:

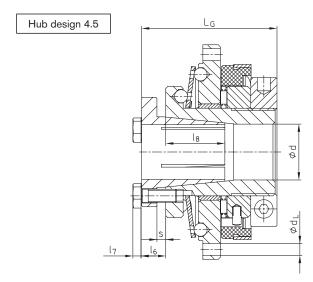
No signal by sensor or mechanical limit switch

In case of overload:

The axial movement of the shift ring activates the sensor or mechanical limit switch, respectively. The resulting signal may be used for control operation (e. g. motor stop).

SYNTEX®


Backlash-free Overload System



SYNTEX® standard flange coupling

- SYNTEX® standard safety clutch applicable up to 400 Nm
- Flange design
- Easy mounting of customers' components
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

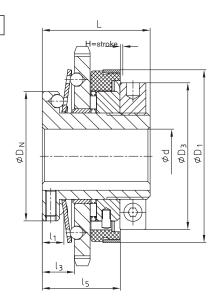
								Te	chnic	al da	ta											
		Torque	s [Nm]		N4								Dime	ensions	[mm]							
Size	Ratchet D			ynchronous design SK speed SK1 SK2 [rpm]		Bore	d															
	DK1	DK2	SK1	SK2	[rpm]	Pilot bore	max.	DA	D ₂	d ₁	D_N	D ₃	D ₁	dL	L	11	12	l ₃	14	I ₅	z	H=stroke
20	6-20	15-30	10-20	20-65	1500	-	20	80	71	65	48	54	61,5	4,5	45	8	2	16	6	35	8	2
25	20-60	45-90	25-65	40-100	1500	-	25	98	89	81	60	68	80	5,5	50	8	2	17	8	39	8	2
35	25-80	75-150	30-100	70-180	1000	-	35	120	110	102	75	78	91	5,5	60	10	2	21	10	42	12	2
50	60-180	175-300	80-280	160-400	1000	-	50	162	152	142	105	108	121	6,6	70	12	2	25	13	56	12	2

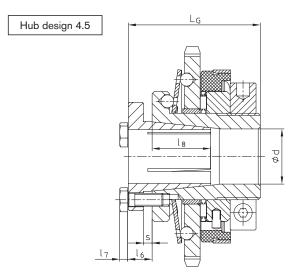
Technical data – Hub design 4.5													
Cino	Size Dimensions [mm]												
Size	d _{max.}	d _{max.} l ₆ l ₇ l ₈ L _G s Clamping screw											
20	20	111001											
25	25	11	4,0	28	61	4	4 x M6	14					
35	35	10	4,0	31	70	4	4 x M6	14					
50	50	12	4,0	37	82	6	4 x M6	14					

	Bores (fitting tolerance H7/h6) and the corresponding transmittable torques T _R [Nm]																					
Size	Ø12	Ø14	Ø15	Ø16	Ø17	Ø18	Ø19	Ø20	Ø22	Ø23	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50
20	45	62	71	81	92	103	115	127														
25		72	83	95	107	120	133	148	179	196	213	231										
35									127	139	152	165	207	237	270	323						
50																238	281	311	343	394	448	486

Order form:	SYNTEX®	25	DK1	Ø 20	1.0	45 Nm
	Coupling type	Size	Design	Bore	Hub design	Torque set

SYNTEX® Backlash-free Overload System




Standard SYNTEX® with integrated sprocket

- Standard SYNTEX® with integrated sprocket
- Available ready to be installed with the torque set
- Reduction of components by integration of parts
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

Hub design 1.0

	Technical data															
		Torques [N	m]		Max.				Dimensi	ons [mm]						
Size		t design K	Synchronous design SK		speed	Bore	d	Standard								
	DK1	DK2	SK1	SK2	[rpm]	Pilot bore	max.	sprocket	D _N	D ₃	D ₁	L	11	l ₃	15	H=stroke
20	6-20	15-30	10-20	20-65	1500	-	20	$^{3}/_{8} \times ^{7}/_{32}, z = 25$	48	54	61,5	45	8	14	35	2
25	20-60	45-90	25-65	40-100	1500	-	25	$^{1}/_{2} \times ^{5}/_{16}, z = 24$	60	68	80	50	8	15	39	2
35	25-80	75-150	30-100	70-180	1000	-	35	$^{1}/_{2} \times ^{5}/_{16}, z = 29$	75	78	91	60	10	19	42	2
50	60-180	175-300	80-280	160-400	1000	-	50	$^{3}/_{4} \times ^{7}/_{16}, z = 27$	105	108	121	70	12	23	56	2

Technical data – Hub design 4.5														
Cina	Size Dimensions [mm]													
Size	d _{max.}	d _{max.} I ₆ I ₇ I ₈ L _G s Clamping scre												
20	20	111000												
25	25	11	4,0	28	61	4	4 x M6	14						
35	35	10	4,0	31	70	4	4 x M6	14						
50	50	12	4,0	37	82	6	4 x M6	14						

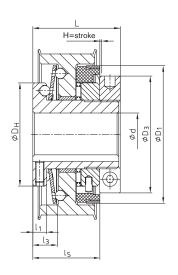
			В	ores ((fitting	tolera	ance I	17/h6) and	the co	orresp	ondin	g tran	smitta	able to	rques	T _R [N	lm]				
Size	Ø12	Ø14	Ø15	Ø16	Ø17	Ø18	Ø19	Ø20	Ø22	Ø23	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50
20	45	62	71	81	92	103	115	127														
25		72	83	95	107	120	133	148	179	196	213	231										
35									127	139	152	165	207	237	270	323						
50																238	281	311	343	394	448	486

Ord	er fo	orm:
-----	-------	------

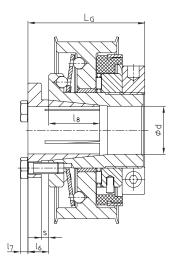
SYNTEX®	25	DK1	Ø 20	1.0	1/2 x 5/16, z = 29	45 Nm
Coupling type	Size	Design	Bore	Hub design	Sprocket	Torque set

SYNTEX®

Backlash-free Overload System



Standard SYNTEX® with belt drive



- Standard SYNTEX® with integrated belt drive
- Available ready to be installed with the torque set
- Reduction of components by integration of parts
- Available both as a ratchet and synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

Hub design 1.0

Hub design 4.5

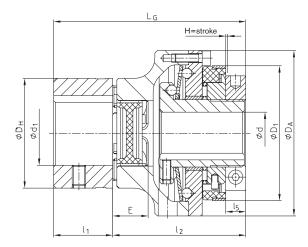
						Tec	hnica	l data									
		Torque	es [Nm]							Dimen	sions [m	m]					
Size	Ratchet D	t design K	Synchrono	•	Max. speed [rpm]	· . I Bore d		Belt drive									
	DK1	DK2	SK1	SK2		Pilot bore	max.	T10 1)	AT10 1)	D_N	D ₃	D ₁	L	11	l ₃	15	H=stroke
20	6-20	15-30	10-20	20-65	1500	-	20	T10, z=24	AT10, z=24	48	54	61,5	45	8	14	35	2
25	20-60	45-90	25-65	40-100	1500	-	25	T10, z=30	AT10, z=30	60	68	80	50	8	15	39	2
35	25-80	75-150	30-100	70-180	1000	-	35	T10, z=36	AT10, z=36	75	78	91	60	10	19	42	2
50	60-180	175-300	80-280	160-400	1000	-	50	T10, z=48	AT10, z=48	105	108	121	70	12	23	56	2

 $^{^{1)}}$ z = min. number of teeth necessary

			Techni	cal data – Hub	design 4.5			
Size				Dimensions [mm]				Tightening torque
Size	d _{max.}	I ₆	I ₇	18	L _G	s	Clamping screw	Tightening torque T _A [Nm]
20	20	9	3,5	23	54	3	4 x M5	8,5
25	25	11	4,0	28	61	4	4 x M6	14
35	35	10	4,0	31	70	4	4 x M6	14
50	50	12	4,0	37	82	6	4 x M6	14

	Bores (fitting tolerance H7/h6) and the corresponding transmittable torques T _R [Nm]																					
Size	Ø12	Ø14	Ø15	Ø16	Ø17	Ø18	Ø19	Ø20	Ø22	Ø23	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50
20	45	62	71	81	92	103	115	127														
25		72	83	95	107	120	133	148	179	196	213	231										
35									127	139	152	165	207	237	270	323						
50																238	281	311	343	394	448	486

Order form:	SYNTEX®	25	DK1	Ø 20	1.0	AT10, z=24	30	45 Nm
	Coupling type	Size	Design	Bore	Hub design	Belt drive	Width of syn- chronous belt	Torque set


Backlash-free Overload System

SYNTEX® with shaft coupling ROTEX® GS

- Backlash-free, axially rigid safety clutch
- Axial plug-in
- Low mass moments of inertia by using aluminium components
- Available both as a ratchet or synchronous design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Also available with a frictionally engaged shaft-hub-connection (hub design 4.5)

	Technical data																			
				Torques	[Nm]									Dimens	sions [mr	m]				
SYNTEX® size	ROTEX® GS size	Ratchet D	t design K	1 1	ronous gn SK		X® GS A-GS	Max. speed		ax. ore										
		DK1	DK2	SK1	SK2	T _{KN}	T _{Kmax.}	[rpm]	d	d ₁	DA	DH	11	Е	12	I ₅	L	LG	D ₁	H=stroke
20	24	6-20	15-30	10-20	20-65	60	120	1500	20	28	80	55	30	18	70	10	45	100	61,5	2
25	28	20-60	45-90	25-65	40-100	160	320	1500	25	38	98	65	35	20	78	11	50	113	80	2
35	38	25-80	75-150	30-100	70-180	325	650	1000	35	45	120	80	45	24	91	13	60	136	91	2
50	48	60-180	175-300	80-280	160-400	525	1050	1000	50	62	162	105	56	28	111	14	70	167	121	2

_			_		
റ	rd	e۲	fο	rm	•
_		•			

SYNTEX®	25	DK1	1.0	Ø 20	ROTEX® GS	28	98 Sh A-GS	1.0	Ø 25	50 Nm
Coupling	Size	Design	Hub	SYNTEX®	Coupling	Size	Spider	Hub	ROTEX® GS	Torque set
type	OIZC	Design	design	bore	type	OIZC	Opidei	design	bore	Torque set

SYNTEX®

Backlash-free Overload System

Assembly / Limit switch / Proximity initiator

Please order our separate mounting instructions KTR-N 46210!

The operating principle of the SYNTEX® overload system enables backlash-free torque transmission by positive locking.

The torque is transmitted by balls and disk springs. By the prestressed force of the disk spring, the balls engage in the respective ball position of the disk spring.

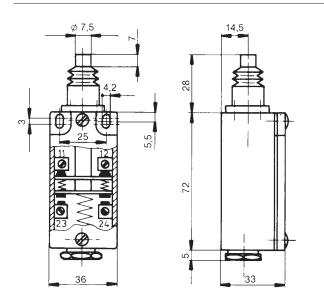
By using a clamping setting nut, the ratchet torque can be set according to the partition of the plastic shift ring.

- Fix the hub against twisting.
- Unscrew the setscrew in the setting nut.
- Turn the setting nut clockwise with a sickle spanner in order to increase the ratchet torque; turn the setting nut anticlockwise in order to reduce the ratchet torque.
- If the requested ratchet torque is set, fix the setting nut again by screwing down the setscrew on the thread of the hub.

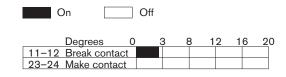
Limit switch

Operation

A mechanical limit switch or an inductive sensor is actuated by the axial stroke of the shift ring arising in case of overload. In this way a control signal is produced disconnecting the drive.


Assembly

The sensor has to be mounted in a solid device in order to ensure a smooth operation. The sensor should be protected against dirt and potential mechanical troubles.


Adjustment

On engagement of the overload coupling, the shift ring realizes an axial stroke movement of about 2 mm. The sensor or the limit switch must be assembled in this shifting range. In order to adapt the mechanical limit switch and the shifting way to the unit, the limit switch has to be adjusted accordingly. For that purpose the shifting way can be changed at the tappet after opening the cover plate.

Please make absolutely sure to check the operativeness of the limit switch before delivery of the unit.

Shifting

Technical data:

500 V AC Maximum voltage Maximum constant current 10 A

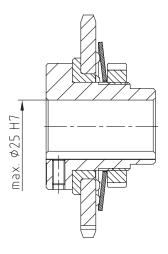
Kind of protection IP 65 acc. to DIN 40050 6.000/h

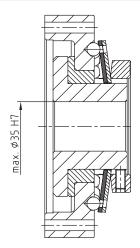
Switching frequency

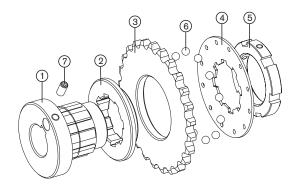
Operating temperature - 30 °C to + 80 °C Kind of contact 1 break contact, 1 make contact

Mechanical service life 107 switches Housing Aluminium diecast Aluminium sheet steel Cover Switching direction : Possible from all directions

After opening the cover plate a change of the shifting way is possible!


SYNTEX® Backlash-free Overload System

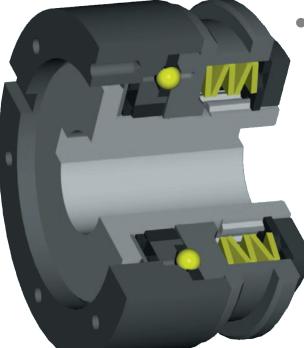

Cost-optimised version


- Low-cost version with high power density
- Ideal for higher quantities e. g. for conveyor belt drives
- Use of optimised manufacturing processes, e. g. sintering
- Please ask for our detailed documentations

- Spec. SYNTEX® 25 with integrated sprocket
- Performance range with 1 disk spring up to 80 Nm, in case of 2 disk springs up to 160 Nm
- Use of different sprockets possible
- Ideal for "simple" drives like e. g. in the conveyor technology

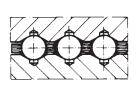
- Spec. SYNTEX® 35 with integrated flange
- Performance range with 1 disk spring up to 200 Nm, in case of 2 disk springs up to 400 Nm
- Adjustment of the flange to ambient construction possible

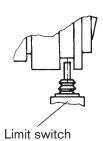
Components:


- Use Hub with external spline to support the disk spring (torque transmission)
- 2 Plain bearing sleeve to support the axial and radial forces
- 3 Sprocket with cylinder bores to support the balls
- Disk spring with internal spline and bores for balls (torque transmission and axial prestress, KTR Patent)
- S Keyway nut for torque setting
- © Ratchet balls for torque transmisson
- Set screw for axial fixing onto the shaft

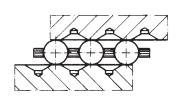
We provide safety

 Overload protection up to 8200 Nm


- Available with same dimensions as a ratchet, synchronous and fail-safe design
- Reduction of torque peaks
- High repeating accuracy, even after a long operating period
 - Disconnection of the drive in case of overload
 - Automatically operative

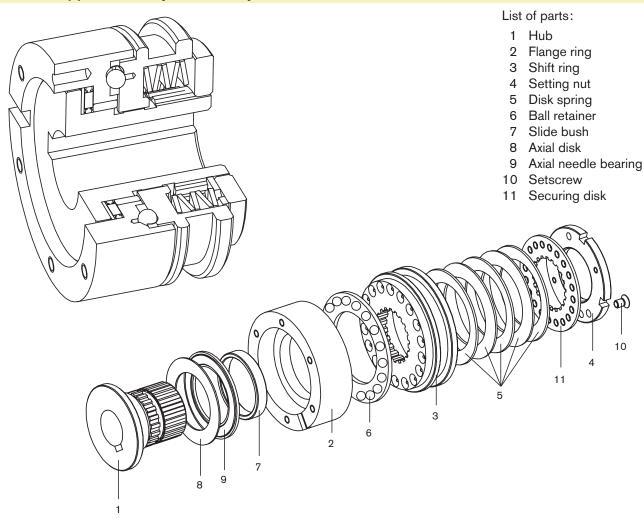

- Different designs also suitable for your application
 - Easy assembly and torque setting
 - Maintenance-free
 - Insensitive to oil and grease
 - High service life due to high-quality materials
 - Backlash-free shaft-hubconnections

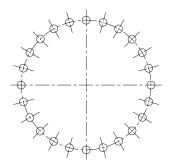
In case of overload the ratchet parts (balls or rollers) leave their indentations, and a relative motion between the driving and driven side is produced. In this way damages due to overload are avoided. The shift ring (3) makes an axial motion to the shifting way "S" and activates the limit switch or proximity initiator. The signal can be used for control functions or for disconnection of the drive. For the restart we would recommend to electrically bypass the limit switch or proximity initiator for a short time.


No signal in case of normal operation

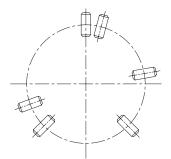
Engaged

Signal in case of overload


Disengaged

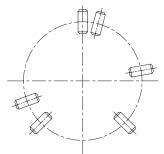


Variable applications by modular system


Three operating principles with the same mounting space

Ratchet design DK

Any engagement after an overload. After eliminating the overload, the balls automatically engage in the next indentation.

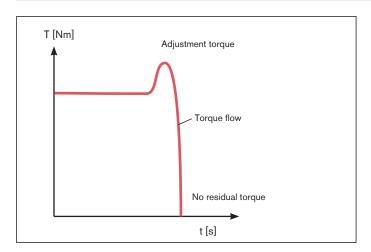

Synchronous design SR

Synchronous engagement after an overload.

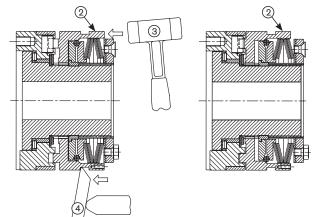
After eliminating the overload the rollers automatically engage after a rotation of 360°. Driving and driven side are always placed in the same position to each other. Other degrees of engagement, e. g. 180°, are also possible.

Fail-safe design SGR

The fail-safe design is a pure torque measurement without any ratchet operation.


In case of overload a signal is given by the limit switch, producing a mechanical separation of driving and driven side = disengagement is not possible.

Idle rotation coupling (load-separating)



- Free-rotating safety clutch up to 1800 Nm torque
- Max. speed up to 5000 rpm (see table)
- Drive end and driven end are permanently separated
- Manual re-engagement
- Optional overload recognition by limit switch or sensor
- Combination with ROTEX® coupling as shaft-to-shaft connection
- Easy assembly and torque adjustment

Operating principle of the KTR-SI idle-rotation couplings:

- When achieving the torque setting, the coupling rotates.
- Subject to the idle rotation mechanism driving and driven side remain separated. The resulting flywheel mass may run out in idle state.
- After having removed the overload, the coupling reengages.
- The re-engagement happens automatically.

Re-engagement Instructions:

Re-engagement of the free-rotating coupling is effected by axial pressure on the shifting ring (2). Dependent on the existing media, accessability etc., the re-engagement can be effected in different ways:

- by several shocks with a plastic hammer (3) axially on the shifting ring (see on the left)
- with mounting levers (4)
- with a pneumatic or hydraulic engagement device (automated process of engagement)

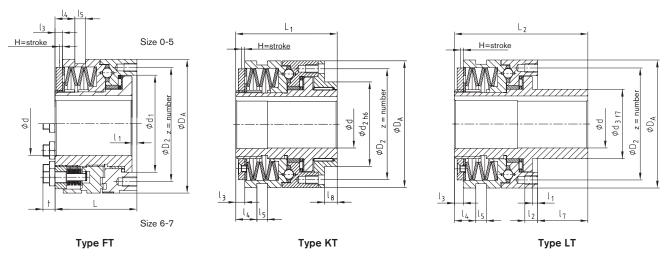
	Torques											
		Torque [Nm]										
Size		Spring layer										
	T1 T2 T3											
1	12-25	25-50	50-100									
2	25-50	50-100	100-200									
3	50-100	100-200	200-450									
4	100-200	200-400	400-800									
5	170-450	350-900	600-1800									

Max. s	Max. speeds									
Max. speed [rpm]										
Size	n _{max.}									
1	5000									
2	4000									
3	3500									
4	3000									
5	2300									

Dimensions like KTR-SI design DK, SR and SGR (see following pages)

Order	form:

KTR-SI	2	FR	FT	T2	Ø 20	40 Nm
Coupling type	Size	Design	Design	Disk springs	Bore	Torque set


KTR-SI Safety system

Type FT, KT and LT

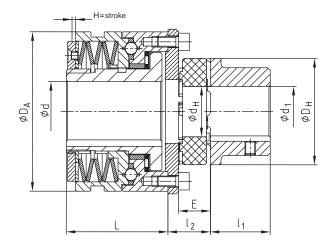
- Standard KTR-SI safety clutch suitable up to 8200 Nm
- Available ready for assembly with the torque set
- For direct mounting of customers' components
- Available as a ratchet, synchronous and fail-safe design
- Torque setting possible while in place
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9
- Surface protection by phosphating

			Tec	hnical data -	Torques, weig	hts			
				Torque	es [Nm]				Weight
Size		Disk spring lay	ers design DK			Disk spring layers o	lesign SR and SGR	2	with max. bore
	T1	T2	T3	T4	T1	T2	T3	T4	[kg]
0	2,5-5	5-20	-	20-40	5-10	10-40	-	-	0,41
1	6-12	12-25	25-55	55-100	12-25	25-50	50-100	-	1,30
2	12-25	25-50	50-120	120-200	25-50	50-100	100-200	-	2,27
3	25-50	50-100	100-250	200-450	50-100	100-200	200-450	-	3,88
4	50-100	100-200	200-500	500-1000	100-200	200-400	400-800	800-2000	8,34
5	85-250	230-600	300-1000	600-2000	170-450	350-900	600-1800	1200-3400	13,51
6	180-480	360-960	720-1950	1600-3300	300-750	600-1500	1200-3000	2900-5800	21
7	250-520	500-1050	1000-2100	2000-3600	550-1100	1100-2200	2200-4400	3000-8200	37

	Technical data – Dimensions																					
											Dimensio	ns [mm]									
Size	Bore	d																		H=s	troke	
	Pilot bore	max.	d ₁	D_2	DA	d ₂	d ₃	11	12	l ₃	14	I ₅	17	l ₈	L	L ₁	L ₂	z	DK	SR	SGR	FR
0	7	20	41,0	48	55	38	28	4,0	6,5	3,0	7,5	9	27,5	8	38,5	51,0	66,0	6xM5	1,4	1,2	0,6	1,6
1	10	25	60,0	70	82	50	38	4,0	8,0	6,0	11,5	9	33,0	10	52,0	70,0	85,0	6xM5	2,3	1,8	0,8	2,3
2	14	35	78,0	89	100	60	52	5,0	10,0	5,0	12,0	9	39,0	12	61,0	78,0	100,0	6xM6	2,4	2,0	1,1	3,0
3	18	45	90,5	105	120	80	65	5,0	12,0	8,5	21,0	10	47,0	12	78,0	96,0	125,0	6xM8	2,7	2,2	1,2	3,5
4	24	55	105,0	125	146	100	78	6,5	15,0	11,0	27,0	9	52,5	16	100,0	124,5	152,5	6xM10 ¹⁾	3,7	2,5	1,2	3,8
5	30	65	120,5	155	176	120	90	6,5	17,0	12,0	33,0	9	57,5	18	113,5	140,0	171,0	6xM12 ¹⁾	4,6	3,0	1,6	4,5
6 2)	40	80	136,0	160	200	130	108	7,0	20,0	14,0	39,0	9	64,0	20	119,0	150,0	183,0	6xM12 ¹⁾	5,0	3,5	2,5	-
7 2)	50	100	168,0	200	240	160	135	8,0	25,0	15,0	46,0	9	72,0	25	141,0	175,0	213,0	6xM16 ¹⁾	5,5	4,0	2,7	-

¹⁾ Type T4 SR and SRG: tightening torques according to 12.9

²⁾ Size 6: dimension t= 15 mm, Size 7: dimension t= 21 mm


Order form:	KTR-SI	2	DK	FT	T2	Ø 20	40 Nm
	Coupling type	Size	Design	Design	Disk springs	Bore	Torque set

With torsionally flexible ROTEX®

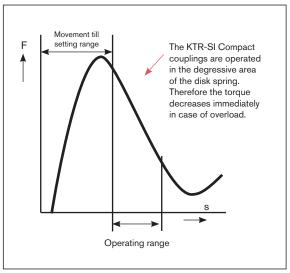
- KTR-SI safety clutch as a shaft-to-shaft connection
- Axial plug-in
- Able to compensate for misalignment
- Available as a ratchet, synchronous and fail-safe design
- Torque setting possible while in place
- Various kinds of elastomer hardness available
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

						Technic	al data -	Torques						
KTR-SI	ROTEX®		[Nm] ¹⁾ Sh-A-GS	ROTEX®	Torque spider 98	[Nm] 1) Sh-A-GS	KTR	SI disk spring Torque	g layer desig es [Nm]	n DK	KTR-SI di	isk spring laye Torque		and SGR
Size	Size	T _{KN}	T _{Kmax}	Size	T _{KN}	T _{Kmax}	T1	T2	T3	T4	T1	T2	T3	T4
0	19	17	34	28	160	320	2,5-5	5-20	-	20-40	5-10	10-40	-	-
1	24	60	120	38	325	650	6-12	12-25	25-55	55-100	12-25	25-50	50-100	_
2	28	160	320	48	525	1050	12-25	25-50	50-120	120-200	25-50	50-100	100-200	-
3	38	325	650	55	685	1370	25-50	50-100	100-250	200-450	50-100	100-200	200-450	-
4	48	525	1050	75	1920	3840	50-100	100-200	200-500	500-1000	100-200	200-400	400-800	800-2000
5	55	685	1370	90	3600	7200	85-250	230-600	300-1000	600-2000	170-450	350-900	600-1800	1200-3400
6	100	4950	9900	100	4950	9900	180-480	360-960	720-1950	1600-3300	300-750	600-1500	1200-3000	2900-5800
7	110	7200	14400	110	7200	14400	250-520	500-1050	1000-2100	2000-3600	550-1100	1100-2200	2200-4400	3000-8200

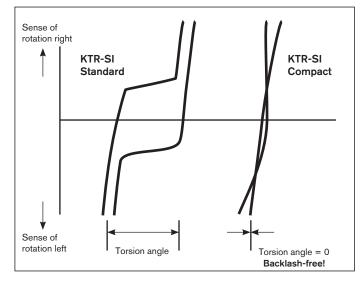
¹⁾ The respective ROTEX® coupling can by selected based on the torque of the machine (see coupling selection for ROTEX®). Torques for 98 Sh-A spider

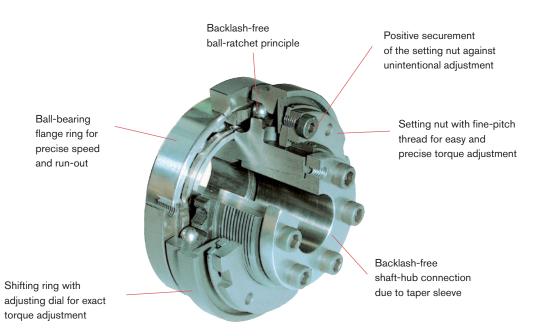
					Technical	data – Din	nensions					
I/TD OI	DOTEV*					imensions [mn	n]				H=stro	ke [mm]
KTR-SI	ROTEX®	Max.	Bore								Des	sign
Size	Size	d	d ₁	D _A	D _H	dH	E	l ₁	l ₂	L	DK	SR
0	19	20	24	55	40	18	16	25	22	38,5	1,4	1,2
0	28	20	38	55	65	30	20	35	28,5	36,5	1,4	1,2
	24	25	28	82	55	27	18	30	24	52	0.0	1.0
ı	38	25	45	82	80	38	24	45	32,5	52	2,3	1,8
	2 28 35	0.5	38	100	65	30	20	35	28	61	0.4	0.0
2		35	60	100	105	51	28	56	38	61	2,4	2,0
3	38	45	45	100	80	38	24	45	32	78	0.7	0.0
3	55	45	70	120	120	60	30	65	43	78	2,7	2,2
,	48	55	60	440	105	51	28	56	38	100	0.5	0.5
4	75	55	95	146	160	80	40	85	56,5	100	3,7	2,5
E	55	CE	70	170	120	60	30	65	44	110.5	4.0	0.0
5	90	65	110	176	200	100	45	100	62	113,5	4,6	3,0
6	100	80	115	200	225	113	50	110	72	119	5,0	3,5
7	110	100	125	240	255	127	55	120	78	141	5,5	4,0

Order form:	KTR-SI 2	28	DK	T2	Ø 25	Ø 20	40 Nm
	Coupling type	ROTEX®	Design	Disk springs	ROTEX®	KTR-SI Bore	Torque set



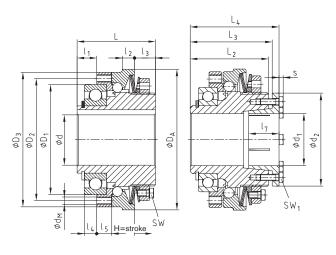
Backlash-free, torsionally stiff safety clutch

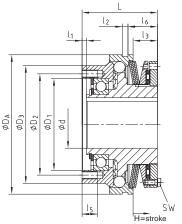


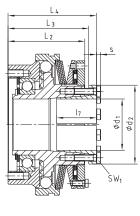

- Backlash-free safety clutch with patented curve spring design
- Precise switch-off with high repeating accuracy
- Exact, backlash-free torque transmission, even in case of wear
- Easy torque setting
- Ball-bearing connection flange
- Hardened ratchet surfaces for long lifespan
- Backlash-free shaft-hub connection due to taper sleeve
- Can be used with proven ROTEX® GS as shaft-to-shaft connection

Characteristic special curve

What is backlash-free?


RUFLEX® SYNTEX® KTR-SI




Type FT, FT-4.5 and FT with ROTEX® GS

- Torque up to 3100 Nm
- Maximum shaft diameter up to 80 mm
- Backlash-free and vibration-reducing in combination with ROTEX® GS
- Drive and driven-sided with backlash-free, frictionally engaged shaft-hub connection
- Synchronous and ratchet design
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

Type FT
Size 01 - 3

Type FT-4.5 with clamping connection Size 01 - 3

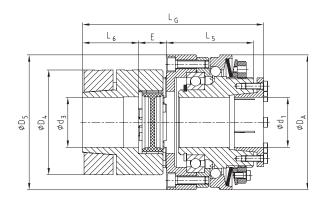
Type FT Size 4

Type FT-4.5 with clamping connection Size 4

	Technical data																		
	C	Т	orques [Nm]								Dime	nsions [n	nm]						
Size	Speed [rpm]	T1	T2	T3	d _{max.}	D ₁ ^{h5}	D ₂	D ₃	D _A	d _M	L	I ₁	l ₂	l ₃	14	I ₅	l ₆	SW	H- stroke
01	4000	3-14	6-28	13-56	20	47	56	65	70	8xM4	40	8	7	12	5	7,5	-	7	1,2
0	3000	9-35	18-70	40-140	30 1)	62	71	80	85	8xM5	48	11	8	14	7	8,0	-	7	1,5
1	2500	19-65	38-130	78-260	35 ¹⁾	75	85	95	100	8xM6	59	14	9	16	9	10,5	-	8	1,8
2	2000	35-110	80-220	160-440	45 ¹⁾	90	100	110	115	8xM6	64	16	10	17	10	12	-	10	2,0
3	1200	80-185	160-370	320-740	50	100	116	130	135	8xM8	75	18	12	21	10	12	-	10	2,2
4	400	230-730	460-1590	960-3100	75	145 ^{H7}	160	186	220	6xM12	119	7	19	38,5	-	24	46,5	13	3,5

¹⁾ max. finish bore, keyway to DIN 6885 sheet 3

	Dimensions with taper sleeve type 4.5 [mm]														
Size	Max. finish bore				Dimensio	ons [mm]									
	d ₁	L ₂	L ₃	L ₄	¹ 7	d ₂	s	sw ₁	T _A [Nm]						
01	10-20	40	42	47	26	40,5	2,8	7	3						
01	19-25	40	42	47	20	42,0	2,0	,	3						
0	30	46	49	56	31	57	4,0	10	10						
4	19-30	57	60	67	40	57	4,0	10	10						
'	32-40	57	60	67	31	64	3,5	8	5,9						
2	50	63	68,5	73	29	73,5	4,0	10	10						
0	32-50	75	78,5	85	29	73,5	4.0	4.0	40						
3	55-60	/5	78,0	86	44	89	4,0	10	10						
4	50-60	110	125,5	133,5	54	96,5	F F	13	28						
4	65-80	119	126	138	62	123	5,5	13	28						


Order form:	KTR-SI Compact	2	DK	T2	Ø 40	4.5	150 Nm
	Coupling type	Size	Design	Disk springs	Bore	Hub design	Torque set

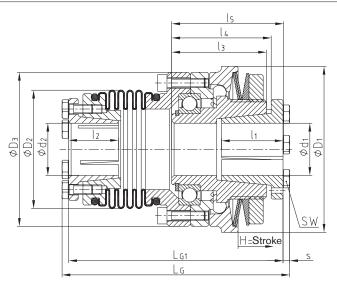
Type FT with ROTEX® GS

- Torque up to 3100 Nm
- Maximum shaft diameter up to 80 mm
- Backlash-free and vibration-reducing in combination with ROTEX® GS
- Drive and driven-sided with backlash-free, frictionally engaged shaft-hub connection
- Synchronous and ratchet design
- Also available in combination with torsionally stiff RADEX®-N or RADEX®-NC
- Finish bore according to ISO fit H7, feather keyway according to DIN 6885 sheet 1 - JS9

Type FT with ROTEX® GS as shaft-to-shaft connection

						Tech	nical dat	а						
Size	Speed	1	Forques [Nm]		ROTEX® GS	Max. fin	ish bore			D	imensions [m	ım]		
	[rpm]	T1	T2	T3	3126	d ₁	d ₃	D ₄	D ₅	LG	L ₅	L ₆	DA	E
01	4000	3-14	6-28	13-56	24	25	28	55	70	102	47	30	70	18
0	3000	9-35	18-70	40-140	28	30	38	65	85	119,5	54,5	35	85	20
1	2500	19-65	38-130	78-260	38	40	45	80	100	146	67	45	100	24
2	2000	35-110	80-220	160-440	42	50	55	95	115	159	73	50	115	26
3	1200	80-185	160-370	320-740	48	60	62	105	135	182	87	56	135	28
4	400	230-730	460-1590	960-3100	75	80	80	160	186	302,5	139,5	85	220	40

Order form:


KTR-SI Compact	2	DK	T2	Ø 40	4.5	150 Nm
Coupling type	Size	Design	Disk springs	Bore	Hub design	Torque set

with a torsionally stiff TOOLFLEX® S-KN

- Max. shaft diameter up to 56 mm
- Non-positive bellow-hub connection
- Maintenance-free
- Good properties of concentric running with high speeds
- Optionally available as design M (6 shafts) or design S (4 shafts, short version)

KTR-SI Compact with TOOLFLEX® S-KN

			Technical	l data – Spe	eds, torque	s, dimensio	ns			
KTR-SI	TOOLFLEX®	Max.	TOOLFLEX® S-KN		Compact es [Nm]			Dimensions [mm]		
Compact Size	Size Size [rpm]	'	Torques [Nm]	T1	T2	d _{1 max} .	d _{2 max.}	D ₁	L _G 2)	L _{G1} 2)
01	30	4000	35	3-14	6-28	25	22	70	96	90,5
0	38	3000	65	9-35	18-70	30	28	85	109	102,0
1	45	2500	150	19-65	38-130	40	40	100	145	137,5
2	55	2000	340	35-110	80-220	50	56	115	170	159,5

Technical data – Dimensions											
KTR-SI	TOOLFLEX®	Dimensions									
Compact	S-KN 1)	[mm]									
Size	Size	D ₂	D ₃	11	12	l ₃	14	15	s	SW ₁	Н
01	30	50,0	65	26	22	40	42,0	47	2,8	7	1,2
0	38	60,5	80	31	26	46	49,0	56	4,0	7	1,5
1	45	82,0	95	40	34	57	60,0	67	4,0	8	1,8
2	55	97,0	110	29	40	63	68,5	73	3,5	10	2,0

¹⁾ Optionally available with clamping hub

Order form:	KTR-SI Compact	1	45	DK	T2	d1 Ø 40	d2 Ø 40	100 Nm
	Coupling type	KTR-SI Compact Size	TOOLFLEX® S-KN Size	Design	Disk springs	Bore KTR-SI Compact	Bore TOOLFLEX® S-KN	Torque set

 $^{^{2)}}$ Depending on the type of TOOLFLEX**, M (6 shafts) or S (4 shafts)